HomeNews & TopicsWound CareProgrammable 3D printed wound dressing could improve treatment for burn, cancer patients

Programmable 3D printed wound dressing could improve treatment for burn, cancer patients

Published on

One of the challenges in treating burn victims is the frequency of dressing changes, which can be extremely painful.

To bring relief to this and other problems, University of Waterloo researchers have created a new type of wound dressing material using advanced polymers. This new dressing could enhance the healing process for burn patients and have potential applications for drug delivery in cancer treatment as well as in the cosmetic industry.

“To treat burn victims, we can customize the shape using a 3D printer, secondly, the material has fine-tuned surface adhesion, which is a key feature”, said Dr. Boxin Zhao, a professor in Waterloo’s Department of Chemical Engineering, whose team has made significant strides in developing intelligent hydrogel materials for use as a reusable wound dressing. “The material can easily adhere to the skin and be taken off. It’s a very delicate balance within the material to make the adhesion work.”

Click here to watch a video demonstration of the multi-thermal aspects of the wound dressing.

In developing the dressing, the researchers conducted a 3D scan of the patient’s face and body parts to customize it to an individual’s needs. This enables the dressing to make good contact with surfaces like noses and fingers, making it ideal for creating personalized wound dressings for burn patients.

The material also has applications for cancer treatment. In traditional chemotherapy treatment, a patient may need to be in a clinic for hours, which can be tiring and uncomfortable. This dressing can provide a constant drug release outside the clinic setting, alleviating some of the challenges associated with traditional methods.

The material used to create these smart dressings includes a biopolymer derived from seaweed, a thermally responsive polymer, and cellulose nanocrystals. The dressing’s thermal responsiveness allows it to warm on the skin and gently lower to room temperature. Additionally, when chilled in the fridge, the dressing expands but shrinks to a smaller size at body temperature, making it easier and less painful to remove. Also, the dressing is designed to provide time-release medication, allowing for longer-lasting pain relief.

“We also envision applications in the beauty and cosmetic industry,” said Zhao, Waterloo’s Endowed Chair in Nanotechnology. “Cosmetologists can utilize 3D scanning technology to analyze their clients’ facial features and customize hydrogel masks infused with specific facial and skin regimen products. Additionally, this innovative approach can benefit plastic surgeons.”

This research is proof of concept for Zhao’s Surface Science and Bio-nanomaterials Laboratory Group. The next step for Zhao’s research group is to continue improving the material’s properties to make it healthier and commercially viable.

study highlighting the team’s progress was recently published in the Journal of Colloids and Interfacial Science.

Latest articles

PTSD patients can benefit just as much from intensive outpatient programs as from inpatient clinics

Keeping patients in their community during treatment can be as effective as being isolated...

How Peer Support empowers “our kind of nursing” at SickKids

The Peer Support and Trauma Response program at The Hospital for Sick Children (SickKids)...

Bringing world’s tiniest heart pump to Scarborough

In a groundbreaking achievement, Scarborough Health Network (SHN) has become the first non-cardiac surgical...

Living with type 1 diabetes My journey through misconceptions, stigma and resilience

I was only a child when my life took a sharp turn. At around...

More like this

Improved continuity of care protective for persons with lower-extremity amputation

After a lower-extremity amputation (LEA), an improved continuity of clinical care – particularly integration...

Solventum Launches All-In-One, Extended-Wear Wound Dressing for V.A.C.® Therapy

New V.A.C.® Peel and Place Dressing Makes Negative Pressure Wound Therapy More Accessible, Less...

Healing faster: Unveiling the future of tissue and organ repair

Combining biomedical finesse and nature-inspired engineering, a University of Ottawa-led team of scientists have...

Pressure injury education – offering potentially life-saving approach to skin health

When Jay De Alwis was admitted to Toronto Rehab, Lyndhurst Centre following spinal hematoma...

ENHANCED BLOOD FLOW: The Benefits?

Improved blood flow has many therapeutic and prophylactic benefits: Promoting wound healing Treatment of...

Equitable healthcare for Indigenous Peoples

The development of a website to provide a culturally safe method to communicate wound,...